
 1

 1 

 2 

 3 

Optimizing Seasonal Firefighting Resource Allocations with Random Consequences: 4 

A Stochastic Integer and Chance-Constrained Programming Estimation Approach 5 

 6 

 7 

Michael Bevers 8 

USDA Forest Service 9 

Rocky Mountain Research Station 10 

2150A Centre Avenue, Suite 361 11 

Fort Collins, Colorado USA 80526 12 

Phone (970) 295-5911 13 

Fax (970) 295-5959 14 

Email mbevers@fs.fed.us 15 

 16 

 17 

January 18, 2006 18 

 19 

 20 

In review:  Canadian Journal of Forest Research 21 



 2

Optimizing Seasonal Firefighting Resource Allocations with Random Consequences: 22 

A Stochastic Integer and Chance-Constrained Programming Estimation Approach 23 

 24 

 25 

Abstract 26 

 27 

Recent studies for optimally deciding seasonal allocations of fire fighting resources 28 

suggest that stochastic integer programming and chance-constrained integer 29 

programming approaches should be explored.  These problems can be very difficult to 30 

solve.  This study develops estimation models that might be useful and more tractable 31 

than exact formulations, particularly considering the quality of information often 32 

available and the often high cost of obtaining better information.  The estimation models 33 

are tested with a heuristic algorithm developed for this study that borrows from more 34 

rigorous statistical procedures used in ranking and selecting of alternatives based on 35 

simulation optimization.  Results from two experiments indicate that these estimation 36 

models are potentially useful and warrant further investigation. 37 
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Introduction 38 

 39 

Deciding the best numbers and station placements of wildfire suppression resources for a 40 

fire season is an important and complex problem.  Both the relatively deterministic costs 41 

of acquiring and stationing seasonal resources, and the highly random costs of actual 42 

firefighting and resulting losses, can be expensive.  Optimization modeling approaches to 43 

this problem date back at least to the work by Parks (1964), but available methods tend to 44 

have difficulty either addressing the scale of planning presented by large jurisdictions 45 

with numerous resources to manage (Boychuck and Martell 1988) or coping with the 46 

stochastic nature of the problem. 47 

 48 

Boychuck and Martell (ibid.) were able to roughly evaluate the seasonal requirements for 49 

the province of Ontario using a Markov chain model that accounted for some random 50 

effects.  For a related problem, Mees and Strauss (1992) used integer programming 51 

models of expected utility based on constant probability coefficients to allocate a fixed 52 

set of resources to various fireline segments.  Both of these methods at least partially 53 

address random effects, but large and often intractable models still result, especially when 54 

random outcomes are interdependent.  The expected utility approach of Mees and Strauss 55 

also presents complications if fire managers behave risk-aversely (see Hardaker et al. 56 

1997), as Mees and Strauss suggest might happen when the set of available resources is 57 

not fixed a priori. 58 

 59 
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Optimization models that address large-scale problems have more often been 60 

deterministic.  For example, Donovan and Rideout (2003) present an integer 61 

programming model used to identify the most efficient organization for a given fire, 62 

which Kirsch and Rideout (2005) have adapted and extended to address the larger-scale 63 

problem of planning the initial attack organization for multiple fires (e.g., a fire season).  64 

Although both formulations are structured much like typical stochastic programming 65 

problems with simple recourse, where one set of variables models possible decisions and 66 

a second set of variables models the resulting random consequences, both studies treat the 67 

problems deterministically. 68 

 69 

The models presented by Donovan and Rideout (ibid.) and by Kirsch and Rideout (ibid.) 70 

suggest that formulating large-scale seasonal fire organization decision problems as 71 

stochastic integer programming problems (to optimize expected value objectives) or as 72 

chance-constrained integer programming problems (to optimize more risk-averse 73 

objectives) should be explored.  Solving these types of problems, however, can be quite 74 

challenging (Birge and Louveaux 1997).  In this paper, I begin examining this approach 75 

by defining a simple test problem small enough to be solved by enumeration.  I then 76 

reformulate the full random variable problem into separate instantiated integer 77 

programming problems and investigate the performance of a heuristic algorithm that 78 

combines simulation with optimization of the separate problems to estimate solutions for 79 

the full problem.  The focus here is on how to simplify solving these kinds of problems 80 

rather than on how to formulate the fire planning problem per se.  Because more realistic 81 

problems might often prove difficult to solve with algorithms that converge to exact 82 
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solutions, testing estimation methods and heuristic solution algorithms seems a useful 83 

step toward optimizing stochastic integer fire planning problems. 84 

 85 

Methods 86 

 87 

Expected Value Problems 88 

 89 

We consider a fire planning unit with nine subunits where the problem is to allocate one 90 

of three possible fire organizations to each subunit so as to minimize either the expected 91 

cost of fires for the fire season, or the seasonal cost associated with a pre-specified, more 92 

risk-averse probability level (i.e., a “probable” or “chance-constrained” cost).  The 93 

expected value programming problem (Problem EVP) is formulated and revised below; 94 

formulations for the chance-constrained programming problem (beginning with Problem 95 

CCP) follow later: 96 

 97 

Problem EVP 98 

 99 

[1]    Minimize  Y  100 

subject to: 101 

[2]    0ij ij

i j

Y Xφ− ≥∑∑  102 

[3]    1ij

j

X i= ∀∑  103 

[4]    {0,1} ,ijX i j∈ ∀  104 
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[5]    ij ij

i j

c X b≤∑∑  105 

where: 106 

  i  indexes the I = 9 subunits of the fire planning unit, 107 

  j  indexes the J = 3 fire organizations being considered for each subunit, 108 

 ijφ  is the mean variable cost for the fire season in subunit i given fire  109 

  organization j, 110 

 cij  is the fixed seasonal cost of using fire organization j in subunit i, 111 

 b  is the budget for fixed seasonal cost available to the planning unit, 112 

 Xij  is a binary decision variable set to one when fire organization j is  113 

  selected for subunit i (and set to zero otherwise), and 114 

 Y  is a simple recourse variable representing the total expected (or mean)  115 

  variable cost for the fire season. 116 

 117 

Equation [1] minimizes the expected seasonal total of variable fire costs (referred to 118 

hereafter as “fire costs”) for the planning unit, as summed across subunits and fire 119 

organization choices in Eq. [2].  Equations [3] and [4] require that each subunit be 120 

allocated exactly one of the three fire organizations being considered for that subunit.  121 

Equation [5] requires that the total cost of employing the nine selected fire organizations 122 

(referred to hereafter as “budgeted costs”) not exceed the available fixed cost budget.  123 

The budgeted costs constrained in Eq. [5] would often be minimized in Eq. [1] along with 124 

expected fire costs in stochastic programming problems; Eq. [5] is used here instead so 125 

we can examine results for two different budget levels. The optimal fire organization 126 

decision XEVP* resulting from Problem EVP is based on knowledge of the expected fire 127 
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costs for the season (although actual fire costs in any one season might differ 128 

considerably). 129 

 130 

Problem EVP is straight-forward if the mean ( ijφ ) of the fire costs for the season can be 131 

estimated exogenously and entered directly into the problem.  Where a complex system 132 

of constraints affects expected values, as in Kirsch and Rideout (2005), and might 133 

preclude knowing them a priori, one alternative is to estimate the expected values 134 

endogenously, as in Problem SEVP below: 135 

 136 

Problem SEVP 137 

 138 

[6]    Minimize  
1

1N

n

n

Y
N=

∑  139 

subject to: 140 

[7]    0n ijn ij

i j

Y f X n− ≥ ∀∑∑  141 

[8]    1ij

j

X i= ∀∑  142 

[9]    {0,1} ,ijX i j∈ ∀  143 

[10]    ij ij

i j

c X b≤∑∑  144 

 145 

where n indexes samples ijnf  of the random variables ( ijF ) representing fire costs for the 146 

season in each subunit under each organization.  The optimal fire organization decision 147 

(XSEVP*) is now based on knowledge of the sample outcomes (hence, imperfect 148 
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knowledge of the expected values); i.e., the decision is only optimal with respect to the 149 

samples drawn.  Accuracy in finding the true optimal solution of interest (XEVP*) is 150 

sacrificed to an unknown extent, and an additional computing cost is incurred due to the 151 

expansion from Eq. [2] with dimension 1 to Eq. [7] with dimension N. 152 

 153 

When total expected cost is a function of numerous constraints that create a large 154 

problem, sample size N might have to be kept small.  In practice, optimal solutions to this 155 

estimated problem could easily miss the mark of identifying an optimal solution to 156 

Problem EVP.  A further step then is to solve random replications of Problem SEVP, 157 

referred to below as Problem SEVP-k: 158 

  159 

Problem SEVP-k 160 

 161 

[11]    Minimize  
1

1N

nk

n

Y
N=

∑  162 

subject to: 163 

[12]    0nk ijnk ijk

i j

Y f X n− ≥ ∀∑∑  164 

[13]    1ijk

j

X i= ∀∑  165 

[14]    {0,1} ,ijkX i j∈ ∀  166 

[15]    ij ijk

i j

c X b≤∑∑  167 

 168 
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Problem SEVP-k is identical to Problem SEVP except that index k has been added to 169 

specify random replications of the Problem.  This highlights that each replication k 170 

produces one estimated solution.  Simulations, statistical procedures, and/or heuristic 171 

methods might then used to select an estimated global optimum from the K replications 172 

examined.  Problem SEVP-k is the building block of the expected value optimization 173 

approach tested in this study. 174 

 175 

Chance Constraint Problems 176 

 177 

We noted above that after selecting and implementing the fire organizations that 178 

minimize expected fire costs, actual fire costs for a given season (such as the upcoming 179 

fire season) might differ considerably.  For example, in the tests reported here based on 180 

lognormal distributions of fire costs in each subunit, observed seasonal fire costs 181 

exceeded average seasonal fire costs in about 40 percent of the cases simulated.  Had fire 182 

costs been normally instead of lognormally distributed, average fire costs would have 183 

been exceeded in about 50 percent of the cases.  Risk-averse fire managers might prefer 184 

to minimize and plan for cost levels that have a smaller probability of exceedance.  185 

Chance-constrained programming is one method for optimizing such “probable” rather 186 

than “expected” outcomes (Bevers and Kent, in review).  Problem CCP, formulated 187 

below, states our fire organization planning problem as a chance-constrained 188 

programming problem: 189 

 190 

Problem CCP 191 
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 192 

[16]    Minimize  B  193 

subject to: 194 

[17]    Pr ( )Y B p> <  195 

[18]    f ( , )Y = X F   196 

[19]    1ij

j

X i= ∀∑  197 

[20]    {0,1} ,ijX i j∈ ∀  198 

[21]    ij ij

i j

c X b≤∑∑  199 

 200 

The chance constraint (Eq. 17) sets an upper bound B on total fire cost Y and requires that 201 

the probability (Pr) of exceeding that cost be less than parameter p, an accepted level of 202 

risk (e.g., 0.05).  The resulting probable fire cost B is minimized in Eq. [16].  Because 203 

Eqs. [17] and [18] can make solving Problem CCP quite difficult, we are again interested 204 

in using endogenous estimation to simplify the problem.  To that end, order statistics will 205 

be developed as a substitute for chance constraints in the problem that follows (see 206 

Fuessle et al. 1987 for another use of order statistics in chance-constrained 207 

programming). 208 

 209 

We observe that in each replicate of Problem SEVP-k, the objective function (Eq. 11) is 210 

not just an estimate of the minimum expected fire cost that can be achieved, it is also 211 

(trivially) an estimate of the minimum expected value of the first order statistic of fire 212 

cost from an order statistic sample of size one.  In Problem SCCP-k (described and 213 



 11

explained below), this idea is extended to allow estimation of the minimum expected 214 

value of the Mth order statistic.  Our motivation is that as M increases, the resulting 215 

observed fire cost and the cumulative probability associated with that fire cost both tend 216 

to increase; we will be minimizing a fire cost in the right-hand tail of the distribution 217 

where the probability of exceeding that fire cost becomes smaller.  Although we do not 218 

know beforehand the probability of exceeding the fire cost associated with the Mth order 219 

statistic, that probability can be estimated with post-optimization simulations of the 220 

resulting decision vector.  Experiment 2 in the Results section will help demonstrate this 221 

concept.  Problem SCCP-k is formulated below: 222 

 223 

Problem SCCP-k 224 

 225 

[22]    Minimize  
1

1N

nk

n

Y
N=

∑  226 

subject to: 227 

[23]    0 ,nk ijmnk ijk

i j

Y f X m n− ≥ ∀∑∑  228 

[24]    1ijk

j

X i= ∀∑  229 

[25]    {0,1} ,ijkX i j∈ ∀  230 

[26]    ij ijk

i j

c X b≤∑∑  231 

 232 

where m now indexes the set of observations used for each of the N independent 233 

observations of the Mth order statistic.  The dimension of Eq. [12] from Problem SEVP-k 234 
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is multiplied by M in Eq. [23], and the expected value estimated in Eq. [22] is now the 235 

expected value of the Mth order statistic of fire cost for the season. 236 

 237 

Note that Problem SCCP-k adds a third level to our hierarchical sampling effort: 1) we 238 

take independent samples indexed by m up to some number M to obtain each observation 239 

of the Mth order statistic of fire cost; 2) we make multiple observations of the Mth order 240 

statistic to endogenously estimate the expected value of that order statistic using the N 241 

overarching samples indexed by n; 3) we make one independent observation of the 242 

minimum possible expected value of the Mth order statistic of fire cost for the season 243 

with the solution of each replicate, indexed by k, of Problem SCCP-k.  The instantiated 244 

estimation Problems SEVP-k and SCCP-k are easy to build and to solve, as would be 245 

many more realistic problems.  How the number K of these problems to solve is 246 

determined in our test case, and how a single solution is chosen from the set of K 247 

resulting solutions, are addressed in the section that follows. 248 

 249 

Before proceeding, we also note that the expected value estimation Problem SEVP-k is 250 

simply the special case of the expected order statistic value estimation Problem SCCP-k 251 

where M = 1.  Hereafter, we use only Problem SCCP-k, relying on the setting for 252 

parameter M to indicate whether we are searching for solutions to a stochastic integer 253 

(expected value) programming problem (M = 1) or for solutions to a chance-constrained 254 

integer programming problem (M > 1). 255 

 256 

A Heuristic Solution Algorithm 257 
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 258 

The heuristic solution procedure used in this study is one of many possible procedures 259 

that might be used (e.g., see Reeves 1993).  As a heuristic method, this algorithm makes 260 

no attempt to run until it converges on a true optimal solution (i.e., a solution to either 261 

Problem EVP or to Problem CCP, whichever is intended by the magnitude of parameter 262 

M in our estimation Problem SCCP-k).  Instead, the algorithm continues searching by 263 

constructing and solving Problem SCCP-k replicates until the estimated probability (τ) of 264 

finding a better solution with the next replicate decreases to a pre-specified stopping 265 

point (τ0).  The steps of the algorithm are as follows: 266 

 267 

Algorithm SCCP-k 268 

 269 

     Step 0: Initialize the best objective function value found (µ^) to an arbitrarily  270 

large number.  Initialize the stack of best solution vectors found 271 

and the stack of discarded solution vectors to zeroes; initialize to 272 

  zeroes counters for each decision variable, a counter k^ for the 273 

  number of replications tested since finding the best solution examined, 274 

and the counter k for the number of the replication currently being  275 

examined. 276 

Set:  min~k  = the minimum number of Problem SCCP-k replications to  277 

   examine, 278 

        max~k  = the maximum number of replications to examine, 279 

        τ0  =  the probability point for terminating the search, where 280 
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   τ is the probability of finding a better solution with the 281 

   next replication, 282 

        α  =  an acceptable probability of rejecting hypothesis H0: τ = τ0  283 

   when H0 is true (the probability of committing a Type I  284 

 error), 285 

        ß  =  an acceptable probability of accepting H0 when it is false 286 

 (the probability of committing a Type II error), 287 

        τ0 + ε  =  the probability of finding a better solution assumed true for  288 

   computing 1 – ß, the probability of accepting H1: τ > τ0  289 

   when τ = τ0 + ε (with ε > 0), 290 

        δ  =  the width of an interval of indifference, or tolerance,  291 

   used as a confidence interval to distinguish estimated  292 

   objective function values (µk), 293 

        l   =  the confidence level required for interval estimation of µk  294 

   such that Pr (µk* - δ/2  ≤  µk  ≤  µk* + δ/2)  ≥  l  where  295 

   µk is the true objective function value for replicate k and  296 

   µk* is the observed objective function value, 297 

       M and N. 298 

 299 

     Step 1: Set k = k + 1.  Build and solve replicate Problem SCCP-k. 300 

  Increment counters by one for the selected decision variables. 301 

     Step 2: Check stacks for decision vector Xk*.  If found, go to Step 5. 302 

     Step 3: Simulate the selected decision vector Xk* until confidence level l is  303 



 15

  achieved for the interval specified around objective function value µk. 304 

     Step 4: Test µk: 305 

   If  (µk* + δ/2) < (µ^ - δ/2) then µk is declared a better solution than 306 

   the previous best solution µ^. 307 

    Set:  k^ = 1,  µ^ = µk*. 308 

    Move decision vectors from the best solution stack to 309 

    the discarded solution stack. 310 

    Place Xk* on the best solution stack. 311 

   Else if  (µk* - δ/2) ≤ (µ^ + δ/2) then µk is declared an alternate  312 

   best solution. 313 

    Set:  k^ = k^ + 1. 314 

    Place Xk* on the best solution stack. 315 

   Else µk is declared a suboptimal solution. 316 

    Set:  k^ = k^ + 1. 317 

    Place Xk* on the discarded solution stack. 318 

     Step 5: Construct a new decision vector Xk, prioritizing allocations based on the 319 

  counts recorded for each decision variable from the preceding k solutions. 320 

  Repeat Steps 2 – 4 for Xk in place of Xk*, but without returning to Step 5  321 

  and without incrementing k^ if Xk is not a better solution. 322 

     Step 6: If k^ ≥ 100, test hypothesis H0 as described below. 323 

  If  (k < min~k)  or if  ( (k < max~k)  and  (H0 tests false or was untested) ) , 324 

  go to Step 1. 325 

     Step 7: Accept µ^ as a qualified estimate of the true global optimal solution (µ*),  326 
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  as described below. 327 

  Simulate the decision vectors from the best solution stack to 328 

  estimate p, the probability that µ^ will be exceeded in any given fire  329 

  season. 330 

  Report those decision vectors and probability estimates along with µ^. 331 

  Stop. 332 

 333 

The decision variable counters incremented in Step 1 and used in Step 5 to construct a 334 

new decision vector are intended to account for the possibility in large problems that 335 

none of the replicates may actually produce a globally optimal decision vector.  For some 336 

problems, the larger number of times some decision variables are selected relative to 337 

others might be indicative that those variables belong in the optimal decision. 338 

 339 

Maintaining a stack of the discarded decision vectors, as well as the set of best decision 340 

vectors found, allows the current decision vector to be checked against all previously 341 

examined decision vectors in Step 2.  This prevents unnecessarily repeating simulations 342 

to estimate the objective function, which might be quite time-consuming depending on 343 

the indifference interval and the confidence level specified for Step 3. 344 

 345 

The test in Step 4 for whether a better, worse, or equivalent solution has been found is 346 

relatively strict.  Ordinarily, a two-sample t-test might be used, but that test can be 347 

problematic if the variances differ for the two solutions.  Here, each of the two solutions 348 

is simulated in batches of 100.  The sample mean from each batch is used as a single 349 
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observation, and the distribution of sample means is assumed to be approximately 350 

normal.  Batches of simulations continue until the probability that the true mean value is 351 

within a ± δ/2 interval of the overall sample mean is at least confidence level l.  At least 352 

200 batches are simulated and z-values of the standard normal distribution are used to 353 

approximate Student t-statistics for determining the confidence interval achieved with 354 

each new batch.  The test in Step 4 then establishes that new objective function values 355 

declared to be either superior or inferior to the previous best value are smaller or larger, 356 

respectively, by more than δ with confidence l 2.  Solutions that do not differ by more 357 

than δ (with confidence l 2) are treated as being equally good; i.e., if optimal, they are 358 

alternate optima. 359 

 360 

The decision to terminate the search for better solutions is based on the likelihood of 361 

finding a better solution given another replication effort.  Each time a solution better than 362 

the previous best solution is found, the probability of finding an even better solution 363 

decreases and the magnitude reached by counter k^ before finding that “even better 364 

solution” tends to increase.  Following each replication, k^ is treated as the size of a 365 

sample from the binomial distribution for which the observations are one success (i.e., a 366 

better solution was found) and k^ - 1 failures (i.e., a better solution was not found).  At k^ 367 

≥ 100, we use the approximation: 368 

    0

0 0

1 ( ^)( ) N (0,1)
( ^)( )(1 )

kW
k

τ
τ τ

−
=

−
∼  369 

 370 

to test H0. 371 
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 372 

Type II errors pose the greater concern for this test because incorrectly accepting H0 leads 373 

to stopping the search prematurely.  Consequently, power of the test is calculated as: 374 

 375 

    1 – ß^ = 
, ^ 1

( )T

k

f t dt
tα

∆

−

∞
∫  376 

 377 

where T ∆  is a noncentral T variable with k^ - 1 degrees of freedom and noncentrality 378 

parameter: 379 

    ( ^)( ) ^k kγ ε= . 380 

When k^ is sufficiently large that ß^ ≤ ß, hypothesis H0 is accepted as true and the 381 

search terminates in Step 6 unless the number of replications has not yet reached min~k, a 382 

pre-specified lower limit.  Alternatively, the search also terminates in Step 6 if the 383 

number of replications has reached max~k, a pre-specified upper limit.  384 

 385 

The idea here is that the best solutions reported in Step 7 are accepted, whether or not 386 

they are truly optimal, on the basis that more searches are too unlikely to find better 387 

solutions to be worth the effort.  Whether the reported solutions are truly equivalent or 388 

are merely quite similar in performance is treated as a matter of indifference to the 389 

decision maker because results are similar enough to be considered equivalent.  While 390 

this approach borrows ideas from the literature on simulation optimization methods (e.g., 391 

Boesel et al. 2003), it is important to note that Algorithm SCCP-k stops short of 392 

rigorously finding optimal solutions, or of even demonstrating that the solutions reported 393 
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are really the best of those examined (the purpose in Boesel et al.).  There are at least two 394 

reasons why this more lax approach might be reasonable for wildland fire planning 395 

purposes.  In contrast to many industrial engineering problems, such as choosing between 396 

alternative circuit designs, where basic information is often readily available and highly 397 

reliable (i.e., only the integrated performance is particularly uncertain) and where the 398 

product selected will be used many, many times, even basic information for fire planning 399 

can be uncertain and difficult to obtain and the selected decision might be implemented 400 

only once or a few times before dynamics have altered the system enough that a new 401 

decision is required. 402 

 403 

Results 404 

 405 

To introduce some symmetry to our test problem that will intentionally create cases that 406 

have alternate optimal solutions, we treat the subunits of the fire planning unit as square 407 

areas arranged in a 3x3 grid.  Subunits are identified as 1 through 9 from upper left to 408 

lower right, so that subunit 3 is in the upper right-hand corner and subunit 7 is in the 409 

lower left-hand corner of the grid.  Three alternative decisions are possible for each 410 

subunit, and decisions for the entire planning unit are described by vectors ranging from 411 

X = (1, 1, 1, 1, 1, 1, 1, 1, 1), where all subunits are assigned the least expensive 412 

alternative, to X = (3, 3, 3, 3, 3, 3, 3, 3, 3), where all subunits are assigned the most 413 

expensive alternative.  We use this notation here for convenience; the actual decision 414 

vectors have 27 binary (0-1) elements.  The budget cost on each subunit for alternative 1 415 

is $1 million, the cost for alternative 2 is $1.5 million, and the cost for alternative 3 is $2 416 
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million.  The distribution of fire cost for the season on each subunit is a lognormally 417 

distributed function of the selected alternative (e.g., see Strauss et al. 1989).  These 418 

distributions are described by the mean and variance of the underlying normal 419 

distributions.  Under alternative 2 the underlying mean parameter for fire cost is 12.6 and 420 

the standard deviation is 0.8 for each subunit.  Random fire costs by subunit are then 421 

generated for that alternative as: 422 

 423 

    (12.6 0.8 )
,( 2),

z
i j mnkf e +

= =  424 

 425 

where z  is a random deviate from the standard normal distribution.  Under alternative 1, 426 

the means and standard deviations of the underlying normal distributions increase by 10 427 

percent; under alternative 3 they decrease by 10 percent.  Seasonal fire costs are spatially 428 

correlated in such a way that the correlations of z-values between subunits that share a 429 

common edge are 0.40, the correlations between subunits that share only a common 430 

vertex are 0.15, and no correlations exist between subunits that are not adjacent. 431 

 432 

Johnson and Kotz (1970) provide a formula that gives expected values of lognormal 433 

random variables based on the parameters of the underlying normal distribution.  Using 434 

that formula, the expected value of fire cost for the entire planning unit was directly 435 

computed for each of the 39 = 19,683 possible decisions as the sum of the expected 436 

values computed for each subunit.  These calculations revealed that the optimal budget 437 

level, i.e., the largest budget for which the incremental benefit exceeded the incremental 438 

cost, is $13.5 million.  The sole optimal decision vector based on expected value is X = 439 
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(2, 2, 2, 2, 2, 2, 2, 2, 2) and the expected fire cost for the planning unit is about $3.7 440 

million.  These calculations also revealed that $13 million offers another interesting 441 

budget level to examine.  The nine decision vectors ranging from X = (1, 2, 2, 2, 2, 2, 2, 442 

2, 2) to X = (2, 2, 2, 2, 2, 2, 2, 2, 1) are all optimal based on expected value, as we might 443 

anticipate because spatial correlations have no impact on expected values.  The expected 444 

fire cost under these alternatives is about $4.8 million. 445 

 446 

No simple formula is available for the variance of the sum of lognormal random 447 

variables, which affects optimal chance-constrained solutions.  Instead, 10 million 448 

simulations were used to estimate the overall standard deviation of fire cost for all 449 

alternatives with budget levels of $13 or $13.5 million.  The simulations for a budget 450 

level of $13.5 million revealed the decision vector X = (2, 2, 2, 2, 2, 2, 2, 2, 2) has the 451 

smallest variance as well as the smallest expected value among those planning 452 

alternatives, indicating that vector will also be optimal for any chance-constrained 453 

problem we define.  The simulations for a budget level of $13 million revealed that four 454 

of the nine decision vectors that are optimal based on expected value also have the 455 

smallest variance among those planning alternatives.  Those four vectors, X = (1, 2, 2, 2, 456 

2, 2, 2, 2, 2), X = (2, 2, 1, 2, 2, 2, 2, 2, 2),  X = (2, 2, 2, 2, 2, 2, 1, 2, 2), and X = (2, 2, 2, 2, 457 

2, 2, 2, 2, 1), will be optimal for any chance-constrained problem we define.  Because 458 

spatial correlations affect overall variance, reduced staffing in the corner subunits is 459 

preferable to reduced staffing elsewhere when variance is considered. 460 

 461 

Heuristic Search Results 462 
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 463 

Experiment 1 464 

 465 

We begin by testing the effect of sample size N when M = 1 for a case with fairly 466 

stringent settings for the heuristic algorithm parameters:  min~k = 100, max~k =5000, α = 467 

0.05, ß = 0.01, τ0 = 0.0001, ε = 0.00001, δ = (0.001)(µk*), and l = 0.99.  With the budget 468 

parameter b = $13.5 million and N = 1, the search concluded after 9 hours and 2 minutes 469 

at K = 2244.  The optimal decision was constructed from decision variable counts and 470 

correctly identified (i.e., it was the last “better” solution found) at k = 13; the rest of the 471 

search was required to satisfy the requirements ß = 0.01, τ0 + ε = 0.00011.  The search 472 

time was quite long because many different decision vectors were found and had to be 473 

simulated at length to estimate with fairly high precision the resulting objective function 474 

values.  The objective function value and p (the probability of exceedance) were 475 

estimated at $3.7 million and 0.41, respectively. 476 

 477 

With N = 10, the search concluded after 33 minutes at K =2232.  The optimal decision 478 

vector was found and correctly identified at k = 1.  The search time was reduced 479 

considerably because many fewer different decision vectors had to simulated; instead, a 480 

few decision vectors were repeatedly found.  Estimates of the objective function value 481 

and p were the same as reported above. 482 

 483 
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With N = 100, the search concluded after 2 minutes at K=2232 with other results much 484 

the same as before.  The optimal decision vector was found repeatedly and with few 485 

exceptions. 486 

 487 

Experiment 2 488 

 489 

For Experiment 2, varying M at a budget level of b = $13 million, the heuristic parameter 490 

settings are relaxed somewhat:  min~k = 100, max~k =5000, α = 0.05, ß = 0.01, τ0 = 491 

0.001, ε = 0.0001, δ = (0.005)(µk*), and l = 0.975.  With N set to 100, M was tested 492 

across the values (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 40).  All searches were completed 493 

either at K = 362 or 363 because one of the optimal solutions was found either at k = 1 or 494 

2.  The correct alternate optima (nine for M = 1, four for M > 1) were reported in all 495 

cases.  The estimated objective function values, p values, and search times are reported in 496 

Table 1.  For these runs, search times were lengthened during optimizations at large M by 497 

problem size.  A few additional tests indicated that successful searches could be 498 

completed for M = 40 in a little over 7 minutes, a five-fold reduction in search time, with 499 

N set to 25 instead of 100. 500 

 501 

Conclusion 502 

 503 

While test results reported here are very limited, they indicate that the use of endogenous 504 

estimation formulations can potentially help solve difficult stochastic integer and chance-505 

constrained integer programming problems.  Whether exact or heuristic solution 506 
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algorithms are the best approach to solving these estimation problems likely depends on 507 

the particular problem at hand.  Many further investigations might be required to more 508 

fully characterize the usefulness of this approach and to refine preferred solution 509 

techniques.  The formulation and algorithm tested here offer a start that at least appears 510 

promising for solving seasonal fire planning problems. 511 
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Table 1.  Estimated objective function values, probability of exceedance values, and 563 

search times for various magnitudes of M in Experiment 2 on the Mth order statistic 564 

estimation Problem SCCP-k. 565 

 566 

        M  Objective Function Value Exceedance Probability Search Time 567 

   (million $)        (minutes) 568 

 569 

         1        4.8      0.39            1.0 570 

         2        6.0      0.22            1.5 571 

         3        6.8      0.16             2.0 572 

         4        7.4      0.12            2.5 573 

         5        7.9      0.10            3.0 574 

         6        8.3      0.08            3.6 575 

         7        8.6      0.07            4.1 576 

         8        8.9      0.06            4.7 577 

         9        9.1      0.055            5.3 578 

       10        9.4      0.049            6.2 579 

       15       10.3      0.028            8.9 580 

       20       11.1      0.024          13.7 581 

       40       12.9      0.012          38.5 582 


